精英家教网 > 高中数学 > 题目详情

20.(本小题满分14分)

四棱锥中,侧棱,底面是直角梯形,,且的中点.
(1)求异面直线所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.

解:以为坐标原点,分别以轴、轴、轴的正方向建立空间直角坐标系,则.………2分

(1).
……4分
,即异面直线所成的角为.…………7分
(2)假设线段上存在一点,使,设.
,则,即
.…………8分
.
,即.
即线段上存在一点,使得,且.………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分) 如图,直三棱柱中, ,.
(Ⅰ)证明:
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共l5分) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1

(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;      
(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,S,E,G分别是B1D1,BC,SC的中点.
求证:直线EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

是棱长为1的正方体内一点,且满足,则点到棱的距离为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:
(2)求正方形ABCD的边长;
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)

如图,矩形中,上的点,且
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案