分析 由题意可得a+c=3,又e=$\frac{c}{a}$=$\frac{1}{2}$,解得a,c,再由a,b,c的关系可得b,进而得到椭圆方程.
解答 解:由题意可得P为椭圆长轴的左端点时,取得最大值3,
即为a+c=3,又e=$\frac{c}{a}$=$\frac{1}{2}$,
解得c=1,a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故答案为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
点评 本题考查椭圆的方程的求法,注意运用椭圆的性质和离心率公式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{4}$,$\frac{π}{2}$) | C. | ($\frac{π}{3}$,$\frac{π}{2}$) | D. | (0,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n<2016? | B. | n≤2016? | C. | n>2016? | D. | n≥2016? |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com