精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数fx)=aa为常数).

1)求a的值;

2)若函数gx)=|2x+1fx|k2个零点,求实数k的取值范围;

3)若x[2,﹣1]时,不等式fx恒成立,求实数m的取值范围.

【答案】(1) ;(2)k∈(01);(3)[4+∞).

【解析】

1)由fx)为R上的奇函数可得f0)=0,解方程可得a

2)由题意可得方程|2x1|k02个解,即k|2x1|2个解,即函数yky|2x1|的图象有2个交点,画出图象即可得到所求范围;

3)由题意可得m≥2xx[2,﹣1]时恒成立,由gx)=2xR上单调递减,即可得到所求范围.

1fx)是定义在R上的奇函数,

可得f0)=a10,即a1

可得fx)=1

f(﹣x+fx0

fx)为R上的奇函数,

a1

2)函数gx)=|2x+1fx|k2个零点

方程|2x1|k02个解,

k|2x1|2个解,

即函数yky|2x1|的图象有2个交点,

由图象得k∈(01);

3x[2,﹣1]时,fx,即1

m≥2xx[2,﹣1]时恒成立,

gx)=2xR上单调递减,

x[2,﹣1]时,gx)的最大值为g(﹣2)=4

m≥4,即m的取值范围是[4+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;

(2)点第一次到达最高点大约要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a+b=2,b>0,则当a=时, 取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 =1(a>b>0)的左焦点为F,离心率为 ,过点F且与x轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若 =8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)

1)写出该公司激励销售人员的奖励方案的函数模型;

2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0 , y0)使得f(f(y0))=y0 , 则a的取值范围是(
A.[1,e]
B.[e1﹣1,1]
C.[1,e+1]
D.[e1﹣1,e+1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(1)求椭圆C的离心率:
(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且 ,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1 , a2 , a3 , …满足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3
(2)求证:对任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.

查看答案和解析>>

同步练习册答案