【题目】设a+b=2,b>0,则当a=时, 取得最小值.
科目:高中数学 来源: 题型:
【题目】已知向量=(4cos2(-),cosx+sinx),=(sinx,cosx-sinx),设f(x)=-1
(1)求满足|f(x)|≤1的实数x的集合;
(2)若函数φ(x)=[f(2x)+tf(x)-tf(-x)]-(1+)在[-,]上的最大值为2,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为 ,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数f(x)=a(a为常数).
(1)求a的值;
(2)若函数g(x)=|(2x+1)f(x)|﹣k有2个零点,求实数k的取值范围;
(3)若x∈[﹣2,﹣1]时,不等式f(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣ .
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 在 方向上的投影.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:
①数列是等比数列;
②数列是递增数列;
③存在最小的正数,使得对任意的正整数 ,都有 ;
④存在最大的正数,使得对任意的正整数,都有.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com