精英家教网 > 高中数学 > 题目详情

【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于

【答案】不存在
【解析】解:由题意设直线l的方程为my=x+1,联立 得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.
设A(x1 , y1),B(x2 , y2),Q(x0 , y0).
∴y1+y2=4m,∴ =2m,∴x0=my0﹣1=2m2﹣1.
∴Q(2m2﹣1,2m),
由抛物线C:y2=4x得焦点F(1,0).
∵|QF|=2,∴ ,化为m2=1,解得m=±1,不满足△>0.
故满足条件的直线l不存在.
所以答案是不存在.
【考点精析】解答此题的关键在于理解直线的斜率的相关知识,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.已知向量 ,| |=| |=1, =0,点Q满足 = + ),曲线C={P| = cosθ+ sinθ,0≤θ≤2π},区域Ω={P|0<r≤| |≤R,r<R}.若C∩Ω为两段分离的曲线,则(
A.1<r<R<3
B.1<r<3≤R
C.r≤1<R<3
D.1<r<3<R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点且互相垂直的两条直线分别与圆交于点AB,与圆交于点C,D.

(1) 若AB,求CD的长;

(2)若直线斜率为2,求的面积;

(3) 若CD的中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取m个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

(1)根据样本数据,试估计盒子中小球重量的中位数与平均值(精确到0.01);

(2)从盒子装的大量小球中,随机抽取3个小球,其中重量在内的小球个数为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差为d的等差数列{an}中,已知a1=10,且a1 , 2a2+2,5a3成等比数列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;

(2)点第一次到达最高点大约要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a+b=2,b>0,则当a=时, 取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(1)求椭圆C的离心率:
(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且 ,求点Q的轨迹方程.

查看答案和解析>>

同步练习册答案