精英家教网 > 高中数学 > 题目详情
(2006•崇文区一模)已知f(x)=ax3+x2+cx是定义在R上的函数,f(x)在[-1,0]和[4,5]上是减函数,在[0,2]上是增函数.
(I)求c的值;
(II)求a的取值范围;
(III)在函数f(x)的图象上是否存在一点M(x0,y0),使得曲线y=f(x)在点M处的切线的斜率为3,若存在,求出点M的坐标;若不存在,说明理由.
分析:(I)先求函数f(x)的导函数f′(x),由f(x)在[-1,0]上是减函数,在[0,2]上是增函数知x=0为函数的一个极值点,由此列方程f′(0)=0即可解得c的值
(II)将函数f(x)的单调性,转化为函数f′(x)的零点分布问题,f(x)在[0,2]上是增函数,在[4,5]上是减函数,说明f′(x)的正零点在[2,4]内,解不等式即可
(III)假设存在点M(x0,y0)使得曲线y=f(x)在点M处的切线的斜率为3,则f′(x0)=3有解,而根据(II)问的计算,此方程的判别式小于零,故而无解,故此点不存在
解答:解:(I)对函数f(x)=ax3+x2+cx求导数,得,f′(x)=3ax2+2x+c
∵f(x)在[-1,0]上是减函数,在[0,2]上是增函数
∴函数f(x)在x=0处有极小值,
∴f′(0)=0,即3a×02+2×0+c=0
∴c=0
(II)∵f(x)=ax3+x2,∴f′(x)=3ax2+2x
令f′(x)=0,解得x1=0,x2=-
2
3a

∵f(x)在[0,2]上是增函数,在[4,5]上是减函数
即f′(x)在[0,2]上大于或等于零,在[4,5]上小于或等于零
∴x2∈[2,4]
-
2
3a
≥2
-
2
3a
≤4

-6≤
1
a
≤-3

-
1
3
≤a≤-
1
6

(III)假设存在点M(x0,y0)使得曲线y=f(x)在点M处的切线的斜率为3,
则f′(x0)=3,即3ax02+2x0-3=0,其中△=4+36a
-
1
3
≤a≤-
1
6

∴-12≤36a≤-6
∴△<0∴3ax02+2x0-3=0无实数根
∴f′(x0)=3不成立
∴不存在点M(x0,y0)使得曲线y=f(x)在点M处的切线的斜率为3.
点评:本题考查了导数在函数单调性和极值中的应用,函数与其导函数的图象性质间的关系,导数的几何意义等知识
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•崇文区一模)如果复数
1+bi
1+i
(b∈R)的实部和虚部互为相反数,则b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)已知直线m、n及平面α、β,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)如图,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,点E是棱BC的中点,AB=BC=AA′
(I)求证直线CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大小;
(III)求直线CA′与平面BB′C′C所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)某足球赛事中甲乙两中球队进入决赛,但乙队明显处于弱势,乙队为争取胜利决定采取这样的战术:顽强防守,0:0逼平甲队,进入点球大战.现规定:点球大战中每队各出5名队员,且每名队员都踢一球,假设在点球大战中双方每名运动员进球概率均为
34
.求:
(I)乙队踢进4个球的概率有多大?
(II)5个点球过后是4:4或5:5平局的概率有多大?

查看答案和解析>>

同步练习册答案