精英家教网 > 高中数学 > 题目详情
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是
A.PB⊥AD   B.平面PAB⊥平面PBC
C.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°
D
解:∵AD与PB在平面的射影AB不垂直,
所以A不成立,又,平面PAB⊥平面PAE,
所以平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,
∴直线BC∥平面PAE也不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是菱形,且, M是A1B1的中点,

(1)求证:平面ABC;
(2)求二面角A1—BB­1—C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在三棱锥中,平面平面的中点.
(1) 证明:
(2) 求所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在长方体中,为棱上一点.

(1)若,求异面直线所成角的正切值;
(2)是否存在这样的点使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把正方形以边所在直线为轴旋转到正方形,其中分别为的中点.
(1)求证:∥平面
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列关于直线与平面的命题中,正确的是 ( )
A.若,则B.若,则.
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,则下列结论错误的是(    )
A.若
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为异面直线,直线,则的位置关系是
A.相交B.异面C.平行D.异面或相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面. 考察下列命题,其中真命题是
A.B.,
C.D.

查看答案和解析>>

同步练习册答案