精英家教网 > 高中数学 > 题目详情
在下列关于直线与平面的命题中,正确的是 ( )
A.若,则B.若,则.
C.若,则D.若,则
B
解:因为关于直线与平面的命题中,若,则.成立,选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是线段AD的中点。求证:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)如图已知在三棱柱ABC——A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点.
 
(1) 求证:面PCC1⊥面MNQ;
(2) 求证:PC1∥面MNQ。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。用反证法证明:直线ME 与 BN 是两条异面直线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,MN分别是A1B1A1A的中点.

(1)求的长;
(2)求的值;
(3)求证:A1BC1M(14分).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在三棱柱中,侧面底面,,,且中点.

(I)证明:平面;
(II)求直线与平面所成角的正弦值;
(III)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,分别是的中点,
的中点,

(Ⅰ)求证:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条直线,α,β是两个平面.有以下命题:
①m,n相交且都在平面α,β外,m∥α, m∥β , n∥α, n∥β ,则α∥β;
②若m∥α, m∥β , 则α∥β;
③若m∥α, n∥β , m∥n,则α∥β.
其中正确命题的个数是(     )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是
A.PB⊥AD   B.平面PAB⊥平面PBC
C.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°

查看答案和解析>>

同步练习册答案