精英家教网 > 高中数学 > 题目详情
(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是线段AD的中点。求证:GM∥平面ABFE 
 
见解析。
本题考查线面平行的判定定理。
根据所给的一系列平行,得到三角形相似,根据平行四边形的判定和性质,得到线与线平行,根据线与面平行的判定定理,得到线面平行.
证法一:
因为EF//AB,FG//BC,EG//AC,
所以
由于AB=2EF,因此,BC=2FG,
连接AF,由于FG//BC,----------6分
中,M是线段AD的中点,
则AM//BC,且因此FG//AM且FG=AM,所以四边形AFGM为平行四边形,因此GM//FA。又平面ABFE,平面ABFE,
所以GM//平面AB。---------------12分
证法二:
因为EF//AB,FG//BC,EG//AC,
所以由于AB=2EF,
因此,BC=2FC,取BC的中点N,
连接GN,因此四边形BNGF为平行四边形,所以GN//FB,---------6分
中,M是线段AD的中点,连接MN,则MN//AB,
因为所以平面GMN//平面ABFE。又平面GMN,
所以GM//平面ABFE。-----------------------------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,已知正方体是底对角线的交点.
求证:(1)
(2 )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,在三棱锥中,的中点,平面,垂足落在线段上,已知
(1)证明:;
(2)在线段上是否存在点,使得二面角为直二面角?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,底面边的中点,与平面所成的角为,且

(1)求证:平面
(2)求二面角的大小的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的底面边长为,高为是边的中点,动点在这个棱锥表面上运动,并且总保持,则动点的轨迹的周长为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列关于点P,直线与平面的命题中,正确的是 (    )
A.若,,则
B.若,且,则
C.若,,则
D.若是异面直线,,,,,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列关于直线与平面的命题中,正确的是 ( )
A.若,则B.若,则.
C.若,则D.若,则

查看答案和解析>>

同步练习册答案