精英家教网 > 高中数学 > 题目详情
如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.
(1)详见解析; (2) 详见解析; (3).

试题分析:(1)证明线面平行,可证线线平行,所以通过证明四边形是平行四边形可知,从而证得.(2)证明面面垂直,可证线面垂直,所以通过证明,而,从而证得.(3)关键是求四棱锥的高,通过证明找到就是棱锥的高,再分别利用圆柱和棱锥的体积公式计算.
试题解析:(1)证明:连结.分别为的中点,∴.
,且.∴四边形是平行四边形,
. ∴.       4分
(2) 证明:为圆柱的母线,所以,即,又是底面圆的直径,所以,所以,所以
所以  9分
(3)解:由题,且由(1)知.∴,∴ ,∴. 因是底面圆的直径,得,且
,即为四棱锥的高.设圆柱高为,底半径为
.      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,分别是棱的中点,点在棱上,已知

(1)求证:平面
(2)设点在棱上,当为何值时,平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是线段AD的中点。求证:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线以及平面,给出下列命题:
①若,则
②若,则
③若,则
④若
其中正确的命题是(      )
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面, 则下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个不同的平面,为三条互不相同的直线,
给出下列四个命题:
①若,则
②若,则
③若,则
④若是异面直线,,则
其中真命题的序号是(   )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

同步练习册答案