精英家教网 > 高中数学 > 题目详情
10.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB,则B=$\frac{π}{4}$.

分析 利用正弦定理和三角形内角和定理消去A,和差公式打开可得B的大小.

解答 解:由a=bcosC+csinB以及正弦定理:
可得:sinA=sinBcosC+sinCsinB
?sinBcosC+sinCcosB=sinBcosC+sinCsinB
∴sinCcosB=sinCsinB
∵sinC≠0
∴cosB=sinB
0<B<π,
∴B=$\frac{π}{4}$.
故答案为$\frac{π}{4}$.

点评 本题考了正弦定理和三角形内角和定理以及两角和与差的计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知$f(x)=\frac{ax}{x+b}$,$f(1)=\frac{5}{4}$,f(2)=2,f[g(x)]=4-x.
(1)求f(x)的解析式;
(2)求g(x)的解析式;
(3)求g(5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD∥BC,∠ADC=90°,ED=BC=2,EB=3,F为棱PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$f(x)=\left\{\begin{array}{l}{2^x},x∈[{0,2}]\\ x+1,x∈[{-2,0})\end{array}\right.$,在集合M={y|y=f(x)}中随机取一个数m,则事件“m>0”的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{4}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠ACB=60°,BC>1,AC=AB+$\frac{1}{2}$,当△ABC的周长最短时,BC的长是$\frac{\sqrt{2}}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线y=1与函数f(x)=2sin2x的图象相交于点P(x1,y1),Q(x2,y2),且|x1-x2|=$\frac{2π}{3}$,则线段PQ与函数f(x)的图象所围成的图形面积是(  )
A.$\frac{2π}{3}+\sqrt{3}$B.$\frac{π}{3}+\sqrt{3}$C.$\frac{2π}{3}+\sqrt{3}-2$D.$\frac{π}{3}+\sqrt{3}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程$\frac{{x}^{2}}{{m}^{2}+n}$-$\frac{{y}^{2}}{3{m}^{2}-n}$=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知方程x2-(bcosA)x+acosB=0的两根之积等于两根之和,且a,b为△ABC的两边,A,B为两内角,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c满足条件:①-4a≤b<-2a;②x∈[-1,1]时,|f(x)|≤1,若对任意的x∈[-2,2],都有f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案