【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
【答案】
(1)
解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,
切点为(0,e0cos0﹣0),即为(0,1),
曲线y=f(x)在点(0,f(0))处的切线方程为y=1;
(2)
解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,
令g(x)=ex(cosx﹣sinx)﹣1,
则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2exsinx,
当x∈[0, ],可得g′(x)=﹣2exsinx≤0,
即有g(x)在[0, ]递减,可得g(x)≤g(0)=0,
则f(x)在[0, ]递减,
即有函数f(x)在区间[0, ]上的最大值为f(0)=e0cos0﹣0=1;
最小值为f( )=e cos ﹣ =﹣ .
【解析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;
(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0, ]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.
科目:高中数学 来源: 题型:
【题目】解答下列问题:
(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;
(2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点是曲线上的一个动点,求它到直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com