精英家教网 > 高中数学 > 题目详情
7.若关于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}-x+1}$>0的解集是R,求实数k的取值范围.

分析 先判断分母恒为正,将不等式进行转化,结合一元二次不等式的性质进行求解即可.

解答 解:∵x2-x+1>0恒成立,
∴不等式式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}-x+1}$>0等价为(k-1)x2+(k-1)x+2>0恒成立,
若k=1,则不等式等价为2>0,满足条件.
若k≠1,则要使不等式恒成立,则满足$\left\{\begin{array}{l}{k-1>0}\\{△=(k-1)^{2}-8(k-1)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{k>1}\\{(k-1)(k-9)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{k>1}\\{1<k<9}\end{array}\right.$,
解得1<k<9,
综上1≤k<9,
即实数k的取值范围是[1,9).

点评 本题主要考查不等式的求解,将不等式转化为一元二次不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用max{a,b}表示实数a,b中较大的一个,对于函数f(x)=2x,g(x)=$\frac{1}{x}$,记作F(x)=max{f(x),g(x)},试画出函数F(x)的图象,并根据图象写出函数F(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x2+2)=x4+5x2+4,则f(x)=x2+x-2,(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)在R上是偶函数,在(-∞,0)上递增,且有f(2a2+a+1)<f(-3a2+2a-1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,点P(x,y)是椭圆上一点.
(1)求x2+y2的最值
(2)若四边形ABCD内接于椭圆E,点A的横坐标为5,点C的纵坐标为4,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=$\sqrt{{x}^{2}-3x+2}$+$\sqrt{2+3x-{x}^{2}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-1,x≤0}\\{x+1,0<x<1}\\{-2x+3,x≥1}\end{array}\right.$.
(Ⅰ)求f{f[f(0.5)]}的值;
(Ⅱ)若f(a+1)=0.5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-ax,g(x)=x2-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是减少的,且g(x)在(1,+∞)上有最小值,求a的取值范围.
(2)若g(x)在(-1,+∞)上是增加的,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1(x∈R).
(1)求f(x)的单调递增区间;
(2)在△ABC中,f(A)=$\frac{1}{2}$,求sinB+sinC的取值范围.

查看答案和解析>>

同步练习册答案