精英家教网 > 高中数学 > 题目详情
10.圆(x-2)2+(y+3)2=5的圆心坐标和半径分别为(  )
A.(-2,3),5B.$(-2,3),\sqrt{5}$C.(2,-3),5D.$(2,-3),\sqrt{5}$

分析 由标准方程即可得到圆的圆心坐标和半径.

解答 解:圆(x-2)2+(y+3)2=5的圆心坐标是(2,-3),半径是$\sqrt{5}$,
故选:D.

点评 本题考查圆的标准方程,考查学生对圆的标准方程的理解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在直三棱柱ABC-A1B1C1中,AB⊥BC,AC=5,则直三棱柱内切球的表面积的最大值为25(3-3$\sqrt{2}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线y2=4x截直线y=2x+m所得弦长AB=3$\sqrt{5}$,
(1)求m的值;
(2)设P是x轴上的一点,且△ABP的面积为9,求P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC中∠ACB=90°,SA⊥面ABC,AD⊥SC,
(1)求证:AD⊥面SBC. 
(2)已知M是SA的中点,证明面MBC⊥面SAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在R上的偶函数y=f(x)满足f(x)=f(1-x),当$x∈[{0,\frac{1}{2}}]$时,f(x)=-4x2+4x,则函数g(x)=f(x)-ln(x+1)的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“?x∈[1,2],则x2-a≥0”是真命题,则a的范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,F2为其右焦点,A1为其左顶点,点B(0,b)在以A1F2为直径的圆上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{5}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为“互为镜像方程对”.给出下列四对方程:
①y=sinx和y=sin2x;②$y={(\frac{1}{2})^x}$和y=2x;③y2=4x和x2=4y;④y=1+lnx和y=1-lnx
其中是“互为镜像方程对”的有(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)<f($\frac{π}{3}$),则f(x)的递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)D.[kπ-$\frac{π}{2}$,kπ](k∈Z)

查看答案和解析>>

同步练习册答案