精英家教网 > 高中数学 > 题目详情
15.命题“?x∈[1,2],则x2-a≥0”是真命题,则a的范围是(-∞,1].

分析 求出x2在[1,2]的最小值,从而求出a的范围即可.

解答 解:命题p:a≤x2在[1,2]上恒成立,y=x2在[1,2]上的最小值为1;
∴a≤1;
故答案为:(-∞,1].

点评 本题考查了函数恒成立问题,考查全称命题的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若将函数y=cos 2x的图象向左平移$\frac{π}{12}$个单位长度,则平移后图象的对称轴为(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$ (k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$ (k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$ (k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$ (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a∈R,设命题p:函数f(x)=ax是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R.若“p∨q”是真命题,“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知∠CAB=45°,∠ACB=15°,AC=$\sqrt{6}$,CD=$\sqrt{7}$,则BD=(  )
A.$\frac{{-1+\sqrt{13}}}{2}$B.$\frac{{1+\sqrt{13}}}{2}$C.3或1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆(x-2)2+(y+3)2=5的圆心坐标和半径分别为(  )
A.(-2,3),5B.$(-2,3),\sqrt{5}$C.(2,-3),5D.$(2,-3),\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2=4x的准线与双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$渐近线围成三角形的面积为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,则不等式loga(x-1)<0的解集(  )
A.(-∞,2)B.(1,2)C.(2,+∞)D.(1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当y=2sin6x+cos6x取得最小值时,cos2x=3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x),若对于任意的x∈R,都有f(-$\frac{1}{2}$-x)=f(-$\frac{1}{2}$+x),且f(-$\frac{1}{2}$)=-$\frac{9}{4}$,f(0)=-2.
(1)求f(x)的解析式;
(2)若方程f(cosθ)=$\sqrt{2}$sin(θ+$\frac{π}{4}$)+msinθ有实数解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案