精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=4x截直线y=2x+m所得弦长AB=3$\sqrt{5}$,
(1)求m的值;
(2)设P是x轴上的一点,且△ABP的面积为9,求P的坐标.

分析 (1)将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得b值,从而解决问题.
(2)设P(a,0),先求点P(a,0)到AB:2x-y-4=0距离,再根据三角形的面积公式,求出a 值,可求P得坐标.

解答 解:(1)由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=2x+m}\end{array}\right.$,
∴4x2+4(m-1)x+m2=0,
由△>0有  16(m-1)2-16m2>0,
解得 m<$\frac{1}{2}$;
设A(x1,y1)B(x2,y2),则x1+x2=1-m,x1x2=$\frac{1}{4}{m}^{2}$,
∵|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{2}^{2}}$$\sqrt{(1-m)^{2}-{m}^{2}}$=$\sqrt{5}$•$\sqrt{1-2m}$=3$\sqrt{5}$,
解得 m=-4.
(2)设点P(a,0),P到直线AB的距离为d,
则d=$\frac{|2a-0-4|}{\sqrt{5}}$=$\frac{2|a-2|}{\sqrt{5}}$,
又S△ABP=$\frac{1}{2}$|AB|•d=9=$\frac{1}{2}$×3$\sqrt{5}$×$\frac{2|a-2|}{\sqrt{5}}$=3|a-2|,
∴|a-2|=3,
解得a=5或a=-1,
故点P的坐标为(5,0)或(-1,0)

点评 本题主要考查了直线与抛物线相交求解弦长,关键是根据方程的根与系数的关系表示由AB=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,这是圆锥曲线的考查的热点之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)是奇函数,当x<0时,f(x)=x3+x2,则f(2)=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{m-3}$=1表示的曲线为双曲线:命题q:方程mx2+(m+3)x+4=0无正实根.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2).
(Ⅰ)求f(-1),f(2.5)的值;
(Ⅱ)求f(x)在[-3,3]上的表达式;
(Ⅲ)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足 $\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,则2x+y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a∈R,设命题p:函数f(x)=ax是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R.若“p∨q”是真命题,“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列选项叙述错误的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
B.若p∨q为真命题,则p、q均为真命题
C.若命题p:?x∈R,x2+x+1≠0,则?p:?x∈R,x2+x+1=0
D.a,b,c∈R,则“ac2>bc2”是“a>b”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆(x-2)2+(y+3)2=5的圆心坐标和半径分别为(  )
A.(-2,3),5B.$(-2,3),\sqrt{5}$C.(2,-3),5D.$(2,-3),\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平行四边形ABCD中,AC与BD相交于点O,E为线段OD的中点,AE的延长线与CD相交于F,若$\overrightarrow{DB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,试用$\overrightarrow a、\overrightarrow b$表示$\overrightarrow{AF}$向量.

查看答案和解析>>

同步练习册答案