精英家教网 > 高中数学 > 题目详情
12.若x,y满足 $\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,则2x+y的最大值为4.

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{2x-y=0}\\{x+y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目标函数z=2x+y得z=1×2+2=4.
即目标函数z=2x+y的最大值为4.
故答案为:4.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是(  )
A.1-$\sqrt{3}$B.-1C.1D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知m∈R,命题p:?x∈[0,1],不等式2x-2≥m2-3m恒成立;命题q:?x∈[-1,1],使得x2-m≥0成立.若命题p∨q为真命题,p∧q为假命题,则实数m的取值范围是(-∞,1)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a∈{-1,1,$\frac{1}{3}$,$\frac{2}{3}$},则使函数y=xa的定义域为R且为奇函数的所有a的值为(  )
A.$-1,\frac{1}{3}$B.$1,\frac{2}{3}$C.$1,\frac{1}{3}$D.$1,\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(x-k)ex
(Ⅰ)当k=1时,求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线y2=4x截直线y=2x+m所得弦长AB=3$\sqrt{5}$,
(1)求m的值;
(2)设P是x轴上的一点,且△ABP的面积为9,求P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则下列说法中,所有正确说法的序号是①②
①f(x)的图象关于直线x=$\frac{7π}{12}$对称
②f(x)的单调递增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z
③方程f(x)=1在[-$\frac{π}{2}$,0]上有两个不相等的实根
④函数f(x)的图象是由函数y=2sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在R上的偶函数y=f(x)满足f(x)=f(1-x),当$x∈[{0,\frac{1}{2}}]$时,f(x)=-4x2+4x,则函数g(x)=f(x)-ln(x+1)的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数$f(x)=\left\{\begin{array}{l}2{e^{x+1}}({x<2})\\{log_3}\frac{1}{{{x^2}-1}}({x≥2})\end{array}\right.$,则f[f(2)]=(  )
A.$\frac{2}{e}$B.2e2C.2eD.2

查看答案和解析>>

同步练习册答案