精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(a-1)x+b+1,当x∈[b,a]时,函数f(x)的图象关于y轴对称,数列{an}的前n项和为Sn,且Sn=f(n).
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
,Tn=b1+b2+…+bn,若Tn>m,求m的取值范围.
(1)∵函数f(x)的图象关于y轴对称,
∴a-1=0,且a+b=0,解得a=1,b=-1,
∴Sn=n2,即有an=Sn-Sn-1=2n-1(n≥2).
a1=S1=1也满足,
∴an=2n-1.(5分)
(2)由(1)得bn=
2n-1
2n

∴Tn=
1
21
+
3
22
+
5
23
+…+
2n-3
2n-1
+
2n-1
2n
,①
1
2
Tn=
1
22
+
3
23
+…+
2n-5
2n-1
+
2n-3
2n
+
2n-1
2n+1
,②
①-②得
1
2
Tn=
1
2
+
2
22
+
2
23
+…+
2
2n-1
+
2
2n
-
2n-1
2n+1

=
1
2
+(
1
2
+
1
22
+
1
23
+…+
1
2n-1
)-
2n-1
2n+1

=
3
2
-
1
2n-1
-
2n-1
2n+1

∴Tn=3-
1
2n-2
-
2n-1
2n
=3-
2n+3
2n
.(9分)
设g(n)=
2n+3
2n
,n∈N+
则由
g(n+1)
g(n)
=
2n+5
2n+1
2n+3
2n
=
2n+5
2(2n+3)
=
1
2
+
1
2n+3
1
2
+
1
5
<1,得g(n)=
2n+3
2n
(n∈N+)随n的增大而减小,
∴g(n)≤g(1),
即Tn≥3-
2+3
2
=
1
2

又Tn>m恒成立,
∴m<
1
2
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案