精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|a-b<x<a+b},B={x|x<-1或x>5}.
(1)若b=1,A⊆B,求实数a的取值范围;
(2)若a=1,A∩B=∅,求实数b的取值范围.

分析 (1)利用集合的包含关系求实数a的取值范围;
(2)利用A∩B=∅,求实数b的取值范围.

解答 解:(1)b=1,A={x|a-1<x<a+1},B={x|x<-1或x>5}.
∵A⊆B,
∴a+1≤-1,或a-1≥5,
∴a≤-2或a≥6;
(2)a=1,A={x|1-b<x<1+b},A∩B=∅,
∴$\left\{\begin{array}{l}{1-b≥-1}\\{1+b≤5}\end{array}\right.$,∴b≤2.

点评 本题考查集合的运算与关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.数列{an}的通项公式是an=(-1)n(3n-2),则该数列的前100项之和为(  )
A.-200B.-150C.200D.150

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$x=\frac{a_1}{3}+\frac{a_2}{3^2}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,其中a1,a2,…,a100每一个值都是0或2这两个值中的某一个,则x一定不属于(  )
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是定义在{x|x≠0}上的偶函数,且当x>0时,f(x)=log2x.
(1)求出函数f(x)的解析式;
(2)画出函数|f(x)|的图象,并根据图象写出函数|f(x)|的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,且a3=7,S6=39,则使Sn取最大值时n的值为(  )
A.8B.10C.9或10D.8或9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P到A(1,0)和直线x=-1的距离相等,且P到直线y=x的距离等于$\frac{{\sqrt{2}}}{2}$,这样的点P共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.给出函数y=lg(ax2+3x+4)
(1)若其值域为R,求实数a的取值范围;
(2)若其定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.集合A={x|x2+x-6=0},B={x|(a2-1)x+a+1=0},A⊆B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0;求证:x1+2x0=0.

查看答案和解析>>

同步练习册答案