【题目】艾滋病是一种危害性极大的传染病,由感染艾滋病病毒
病毒
引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能
下表是近八年来我国艾滋病病毒感染人数统计表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
感染者人数 |
|
|
|
|
|
|
| 85 |
请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;
![]()
请用相关系数说明:能用线性回归模型拟合y与x的关系;
建立y关于x的回归方程
系数精确到
,预测2019年我国艾滋病病毒感染人数.
参考数据:
;
,
,
,
参考公式:相关系数
,
回归方程
中,
,
.
科目:高中数学 来源: 题型:
【题目】已知某芯片所获订单
(亿件)与生产精度
(纳米)线性相关,该芯片的合格率
与生产精度
(纳米)也线性相关,并由下表中的5组数据得到,
与
满足线性回归方程为:
.
精度 | 16 | 14 | 10 | 7 | 3 |
订单 | 7 | 9 | 12 | 14.5 | 17.5 |
合格率 | 0.99 | 0.98 | 0.95 | 0.93 |
|
(1)求变量
与
的线性回归方程
,并预测生产精度为1纳米时该芯片的订单(亿件);
(2)若某工厂生产该芯片的精度为3纳米时,每件产品的合格率为
,且各件产品是否合格相互独立.该芯片生产后成盒包装,每盒100件,每一盒产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品.现对一盒产品检验了10件,结果恰有一件不合格,已知每件产品的检验费用为
元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付200元的赔偿费用.若不对该盒余下的产品检验,这一盒产品的检验费用与赔偿费用的和记为
,以
为决策依据,判断是否该对这盒余下的所有产品作检验?
(参考公式:
,
)
(参考数据:
;
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.
![]()
(1)当点P距O处2百米时,求OQ的长;
(2)当公路PQ的长最短时,求OQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】莱昂哈德·欧拉
,瑞士数学家、自然科学家.
岁时入读巴塞尔大学,
岁大学毕业,
岁获得硕士学位,他是数学史上最多产的数学家.其中之一就是他发现并证明欧拉公式
,从而建立了三角函数和指数函数的关系.若将其中的
取作
就得到了欧拉恒等式
,它是数学里令人着迷的一个公式,它将数学里最重要的几个量联系起来:两个超越数:自然对数的底数
,圆周率
;两个单位:虚数单位
和自然数单位
;以及被称为人类伟大发现之一的
,数学家评价它是“上帝创造的公式”请你根据欧拉公式:
,解决以下问题:
(1)试将复数
写成
(
、
,
是虚数单位)的形式;
(2)试求复数
的模.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的左、右焦点分别为
,
,离心率
,椭圆的短轴长为2.
(1)求椭圆的标准方程;
(2)已知直线
,
过右焦点
,且它们的斜率乘积为
,设
,
分别与椭圆交于点A,B和C,D.
①求
的值;
②设
的中点M,
的中点为N,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机
万只并全部销售完,每万只的销售收入为
万元,且![]()
(1)写出年利润
(万元)关于年产量
(万只)的函数解析式;
(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com