精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+
ax
+b(a,b∈R)
的图象在点(1,f(1))处得切线在y轴上的截距为3,若f(x)>x在(1,+∞)上恒成立,则a的取值范围是
[1,+∞)
[1,+∞)
分析:先根据图象在点(1,f(1))处得切线在y轴上的截距为3,求得b=3-2a,再将f(x)>x在(1,+∞)上恒成立,转化为f(x)-x>0在(1,+∞)上恒成立,构造新函数,再进行分类讨论,即可确定a的取值范围.
解答:解:由题意,f(1)=2a+b∵函数f(x)=ax+
a
x
+b(a,b∈R)

∴f′(x)=a-
a
x2

∴f′(1)=0;
所以图象在点(1,f(1))处的切线为:y=f(1)=2a+b=3∴b=3-2a 若f(x)>x在(1,+∞)上恒成立即:f(x)-x>0在(1,+∞)上恒成立;
设g(x)=f(x)-x=(a-1)x+
a
x
+3-2a,
∴g′(x)=a-1-
a
x2
a≤0时,x2>1,0<
1
x2
<1,∴0<-
a
x2
<-a,∴a-1-
a
x2
<-1<0; 0<a<1时,a-1<0,∴-
a
x2
<0,∴a-1-
a
x2
<0;所以a<1时,g′(x)<0,g(x)在(1,+∞)上是减函数,
∴g(x)>0不会恒成立,不满足题意;
把a=1代入可得:g(x)=
1
x
+1>0在(1,+∞) 上恒成立,符合条件; a>1时,g′(x)=0 得:x=
a
a-1
;当x>
a
a-1
时,g′(x)>0;1<x<
a
a-1
时,g′(x)<0 所以g(x)min=g
a
a-1
)>0即可即:(a-1)
a
a-1
+
a
a
a-1
+3-2a>0
2
a(a-1)
>2a-3
①当1<a≤
3
2
时,上式恒成立; ②当a>
3
2
时,平方得:4a2-4a>4a2-12a+9 即:a>
9
8

∴a>
3
2
时,符合题意;综上可知:a的取值范围是:[1,+∞),
故答案为:[1,+∞)
点评:本题重点考查导数知识的运用,考查恒成立问题,解题时正确分类,利用导数确定函数的单调性是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案