精英家教网 > 高中数学 > 题目详情
已知x∈R,[x]表示不大于x的最大整数,如[π]=3,[-
1
2
]=-1
[
1
2
]=0
,则使[x-1]=3成立的x的取值范围是
4≤x<5
4≤x<5
分析:根据[x]表示不大于x的最大整数,把[x-1]=3转化为不等式3≤x-1<4,即可求出x的范围.
解答:解:根据[x]表示不大于x的最大整数可知:
[x-1]=3,则3≤x-1<4解得4≤x<5
故答案为:4≤x<5
点评:本题主要考查了新定义的运算,对[x]表示不大于x的最大整数的理解是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:
精英家教网
那么,不等式|f-1(x-1)|<2的解集是(  )
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试(上海卷)、数学 题型:044

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz).

(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;

(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上.写出线段s的表达式,并说明理由;

(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写下表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:不等式(解析版) 题型:选择题

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:

那么,不等式|f-1(x-1)|<2的解集是( )
A.{x|<x<4}
B.{x|<x<3}
C.{x|1<x<2}
D.{x|1<x<5}

查看答案和解析>>

同步练习册答案