精英家教网 > 高中数学 > 题目详情
15.(文)已知定义在实数集R上的函数f(x)满足f(2)=7,且f(x)的导数f′(x)在R上恒有f′(x)<3(x∈R),则不等式f(x)<3x+1的解集为(  )
A.(1,+∞)B.(-∞,-2)C.(-∞.-1)∪(1,+∞)D.(2,+∞)

分析 构造函数g(x)=f(x)-3x-1,g'(x)=f′(x)-3<0,从而可得g(x)的单调性,结合f(2)=7,可求得g(2)=2,然后求出不等式的解集即可.

解答 解:令g(x)=f(x)-3x-1,
∵f′(x)<3(x∈R),
∴g′(x)=f′(x)-3<0,
∴g(x)=f(x)-3x-1为减函数,
又f(2)=7,
∴g(2)=f(2)-6-1=0,
∴不等式f(x)<x+1的解集?g(x)=f(x)-3x-1<0=g(2)的解集,
即g(x)<g(2),又g(x)=f(x)-3x-1为减函数,
∴x>2,即x∈(2,+∞).
故选:D.

点评 本题利用导数研究函数的单调性,可构造函数,考查所构造的函数的单调性是关键,也是难点所在,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合A={0,2,4,6},B={x∈N+|2x≤33},则集合A∩B的子集的个数为(  )
A.6B.7C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\int_0^{\frac{π}{4}}{cosxdx=\int_0^a{{x^2}dx}}$,则a3=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,直线$y=x+\sqrt{6}$与以原点为圆心,以椭圆E的短半轴长为半径的圆相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若斜率为k(k≠0)的直线l与椭圆E相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆E的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅表来确定“X与Y有关系”的可信程度.
P(K2≥k)0.050.0250.0100.0050.001
k3.8415.0246.6357.87910.828
如果K2>5.024,那么就有把握认为“X与Y有关系”的百分比为(  )
A.25%B.75%C.2.5%D.97.5%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设p,q是两个命题,若(¬p)∧q是真命题,那么(  )
A.p是真命题且q是假命题B.p是真命题且q是真命题
C.p是假命题且q是真命题D.p是真命题且q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+bx2+cx的导函数图象关于直线x=2对称
(1)求b值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥P-ABC的四个顶点均在半径为5的球面上,且△ABC是斜边长为8的等腰直角三角形,则三棱锥P-ABC的体积的最大值为(  )
A.64B.128C.$\frac{64}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图及尺寸如图所示,则该几何体的体积为(  )
A.24B.30C.48D.72

查看答案和解析>>

同步练习册答案