精英家教网 > 高中数学 > 题目详情
20.设p,q是两个命题,若(¬p)∧q是真命题,那么(  )
A.p是真命题且q是假命题B.p是真命题且q是真命题
C.p是假命题且q是真命题D.p是真命题且q是假命题

分析 由题意得到(?p)和q都是真命题,由此能求出p是假命题且q是真命题.

解答 解:∵p,q是两个命题,(¬p)∧q是真命题,
∴(?p)和q都是真命题,
∴p是假命题且q是真命题.
故选:C.

点评 本题考查命题的真假判断,是基础题,解题时要认真审,注意复合命题的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx-x的单调增区间为(  )
A.(1,+∞)B.(0,1)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,将直角△ABC沿着平行BC边的直线DE折起,使得平面A′DE⊥平面BCDE,其中D、E分别在AC、AB边上,且AC⊥BC,BC=3,AB=5,点A′为点A折后对应的点,当四棱锥A′-BCDE的体积取得最大值时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列运算正确的个数为(  )
①(x2cosx)'=-2xsinx
②(3x)'=3xlog3e
③$(lgx)'=\frac{1}{xlge}$
④$(\frac{e^x}{x})'=\frac{{{e^x}+x{e^x}}}{x^2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(文)已知定义在实数集R上的函数f(x)满足f(2)=7,且f(x)的导数f′(x)在R上恒有f′(x)<3(x∈R),则不等式f(x)<3x+1的解集为(  )
A.(1,+∞)B.(-∞,-2)C.(-∞.-1)∪(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x不等式xlnx-x3+x2≤aex恒成立,则实数a的取值范围是(  )
A.[e,+∞)B.[0,+∞)C.$[\frac{1}{e},+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足:an+1>2an-an-1(n>1.n∈N*),给出下述命题:
①若数列{an}满足:a2>a1,则an>an-1(n>1,n∈N*)成立;
②存在常数c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),则ap+aq>am+an
④存在常数d,使得an>a1+(n-1)d(n∈N*)都成立
上述命题正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.小明参与某商场家电会场举行的一次智力问答,其中问题随机抽取,若小明回答问题正碘的概率为$\frac{3}{4}$,且正确加10分;回答问题错误的概率为$\frac{1}{4}$,且错误扣10分;记小明回答完第n个问题的总得分为Sn
(1)求S3=10的概率;
(2)记ξ=|S4|,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P是△ABC内一点,且满足2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$,那么S△PBC:SPCA:S△PAB等于(  )
A.4:3:2B.2:3:4C.$\frac{1}{4}$:$\frac{1}{3}$:$\frac{1}{2}$D.$\frac{1}{2}$:$\frac{1}{3}$:$\frac{1}{4}$

查看答案和解析>>

同步练习册答案