| A. | 1 | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\sqrt{5}$ |
分析 由约束条件作出可行域,再由$|\overrightarrow{OP}|=\sqrt{{x}^{2}+{y}^{2}}$的几何意义,即原点到直线的距离求解.
解答 解:∵P(x,y),∴$|\overrightarrow{OP}|=\sqrt{{x}^{2}+{y}^{2}}$,
由约束条件$\left\{\begin{array}{l}{x+y≤3}\\{y≤3x}\\{x+2y-2≥0}\end{array}\right.$作出可行域如图,![]()
原点O到直线x+2y-2=0的距离d=$\frac{|-2|}{\sqrt{{1}^{2}+{2}^{2}}}=\frac{2\sqrt{5}}{5}$.
∴|$\overrightarrow{OP}$|的最小值等于$\frac{2\sqrt{5}}{5}$.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{6}$,0) | B. | (-$\frac{π}{6}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{12}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,0] | B. | [-$\frac{9}{4}$,0] | C. | [2,4] | D. | [-$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com