精英家教网 > 高中数学 > 题目详情
14.设F是抛物线E:y2=2px(p>0)的焦点,直线l过点F且与抛物线E交于A,B两点,若F是AB的中点且|AB|=8,则p的值是(  )
A.2B.4C.6D.8

分析 设A(x1,y1),B(x2,y2),则${x_F}=\frac{{{x_1}+{x_2}}}{2}=\frac{p}{2}$,利用弦长公式,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),则${x_F}=\frac{{{x_1}+{x_2}}}{2}=\frac{p}{2}$,
故|AB|=x1+x2+p=2p=8,即p=4.
故选:B.

点评 本题考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(1+i)z=|$\sqrt{3}$+i|,i为虚数单位,则z等于(  )
A.1-iB.1+iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面四边形ABCD中,连接对角线BD,已知CD=9,BD=16,∠BDC=90°,sinA=$\frac{4}{5}$,则对角线AC的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合$A=\left\{{x\left|{y=lg\frac{2-x}{x+2}}\right.}\right\}$,集合B={y|y=1-x2},则集合{x|x∈A∪B且x∉A∩B}为(  )
A.[-2,1]∪(2,+∞)B.(-2,1)∪(2,+∞)C.(-∞,-2)∪[1,2)D.(-∞,-2]∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={3,2,-1,-2},m∈A,n∈A方程mx2+ny2=1表示的图形记为“W”,则W表示双曲线的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.春天来了,某学校组织学生外出踏青.4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是(  )
A.964B.1080C.1152D.1296

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{π}{4}$C.$\frac{1}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P(x,y)的坐标满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{y≤3x}\\{x+2y-2≥0}\end{array}\right.$,O为坐标原点,则|$\overrightarrow{OP}$|的最小值等于(  )
A.1B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等腰△ABC的角A=$\frac{π}{3}$,|BC|=2,以A为圆心,$\sqrt{3}$为半径作圆,MN为该圆的一条直径,则$\overrightarrow{BM}•\overrightarrow{CN}$的最大值为2$\sqrt{3}$-1.

查看答案和解析>>

同步练习册答案