精英家教网 > 高中数学 > 题目详情
19.春天来了,某学校组织学生外出踏青.4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是(  )
A.964B.1080C.1152D.1296

分析 根据题意,先用捆绑法分析“甲和乙站在一起”的情况数目,再其中求出“甲和乙站在一起且女生全站在一起”的情况数目,用“甲和乙站在一起”的情况数目减去“甲和乙站在一起且女生全站在一起”的情况数目即可得答案.

解答 解:根据题意,男生甲和乙要求站在一起,将2人看成一个整体,考虑2人的顺序,有A22种情况,
将这个整体与其余5人全排列,有A66种情况,
则甲和乙站在一起共有A22A66=1440种站法,
其中男生甲和乙要求站在一起且女生全站在一起有A22A33A44=288种;
则符合题意的站法共有1440-288=1152种;
故选:C.

点评 本题考查排列、组合的应用,运用排除法进行分析,注意掌握常见问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(x,1)与向量$\overrightarrow{b}$=(9,x)的夹角为π,则x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知PD垂直于以AB为直径的圆O所在的平面,点D在线段AB上,点C为圆O上一点,且BD=PD=3,AC=2AD=2.
(Ⅰ)求证:CD⊥平面PAB
(Ⅱ)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合$M=\left\{{\left.x\right|x=\frac{n}{2}+1,n∈Z}\right\}$,$N=\left\{{\left.y\right|y=m+\frac{1}{2},m∈Z}\right\}$,则两集合M,N的关系为(  )
A.M∩N=∅B.M=NC.M?ND.N?M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F是抛物线E:y2=2px(p>0)的焦点,直线l过点F且与抛物线E交于A,B两点,若F是AB的中点且|AB|=8,则p的值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在棱长为6的正方体ABCD-A1B1C1D1中,P、Q是直线DD1上的两个动点.如果PQ=2,那么三棱锥P-BCQ的体积等于12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.曲线$y=sin({x+\frac{π}{3}})$在点$({0,\frac{{\sqrt{3}}}{2}})$处的切线方程是x-2y+$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=a-x2(1≤x≤2)与g(x)=x+2的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.[-2,0]B.[-$\frac{9}{4}$,0]C.[2,4]D.[-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合$M=\left\{{x\left|{\frac{x-2}{x-3}<0}\right.}\right\},N=\left\{{x\left|{{{log}_{\frac{1}{2}}}(x-2)≥1}\right.}\right\}$,则M∩N=(  )
A.$[{\frac{5}{2},3})$B.$({2,\frac{5}{2}}]$C.$[{2,\frac{5}{2}}]$D.$({\frac{5}{2},3})$

查看答案和解析>>

同步练习册答案