精英家教网 > 高中数学 > 题目详情
10.如图,已知PD垂直于以AB为直径的圆O所在的平面,点D在线段AB上,点C为圆O上一点,且BD=PD=3,AC=2AD=2.
(Ⅰ)求证:CD⊥平面PAB
(Ⅱ)求点A到平面PBC的距离.

分析 (Ⅰ)连结CO,推导出CD⊥AO,PD⊥CD,由此能证明CD⊥平面PAB.
(Ⅱ)利用等体积方法,求点A到平面PBC的距离.

解答 (Ⅰ)证明:由BD=3,AD=1,得AB=4,AO=2,得点D为AO的中点
连接OC,∵AO=AC=OC=2,∴△ACO为正三角形,
∴CD⊥AO,
又PD⊥圆O所在的平面,CD在圆O所在平面内,
∴PD⊥CD,
∵PD∩AO=D,
∴CD⊥平面PAB.
(Ⅱ)解:由(Ⅰ)可得PC=2$\sqrt{3}$,BC=2$\sqrt{3}$,PB=3$\sqrt{2}$,
∴S△PCB=$\frac{1}{2}×3\sqrt{2}×\frac{\sqrt{30}}{2}$=$\frac{3\sqrt{15}}{2}$,S△ABC=$\frac{1}{2}×2×2\sqrt{3}$=2$\sqrt{3}$,
由等体积可得$\frac{1}{3}×2\sqrt{3}×3=\frac{1}{3}×\frac{3\sqrt{15}}{2}d$,∴d=$\frac{4\sqrt{5}}{5}$,
∴点A到平面PBC的距离为$\frac{4\sqrt{5}}{5}$.

点评 本题考查线面垂直的证明,考查点A到平面PBC的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知抛物线C1:y2=ax(a>0)的焦点与双曲线C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦点重合,记为F点,点M与点P(4,6)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为(  )
A.$\frac{5}{2}$B.8C.$\frac{13}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已x,y∈R,满足x2+y2+2x=0,则2x+y的最大值、最小值分别为-2+$\sqrt{5}$,-2-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(-2,0),B(2,0),斜率为k的直线l上存在不同的两点M,N满足:|MA|-|MB|=2$\sqrt{3}$,|NA|-|NB|=2$\sqrt{3}$,且线段MN的中点为(6,1),则k的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面四边形ABCD中,连接对角线BD,已知CD=9,BD=16,∠BDC=90°,sinA=$\frac{4}{5}$,则对角线AC的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|2x-1|
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集为[-$\frac{3}{2}$,$\frac{3}{2}$],求实数m的值;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,对任意的实数x,y∈R都成立,求正实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合$A=\left\{{x\left|{y=lg\frac{2-x}{x+2}}\right.}\right\}$,集合B={y|y=1-x2},则集合{x|x∈A∪B且x∉A∩B}为(  )
A.[-2,1]∪(2,+∞)B.(-2,1)∪(2,+∞)C.(-∞,-2)∪[1,2)D.(-∞,-2]∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.春天来了,某学校组织学生外出踏青.4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是(  )
A.964B.1080C.1152D.1296

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.5位大学毕业生分配到3家单位,每家单位至少录用1人,则不同的分配方法共有(  )
A.25种B.60种C.90种D.150种

查看答案和解析>>

同步练习册答案