精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{a}$=(x,1)与向量$\overrightarrow{b}$=(9,x)的夹角为π,则x=-3.

分析 利用两个向量的夹角的定义,查两个向量共线的性质,求得x的值.

解答 解:∵向量$\overrightarrow{a}$=(x,1)与向量$\overrightarrow{b}$=(9,x)的夹角为π,
则(9,x)=-λ•(x,1),λ>0,
∴9=-λx,x=-λ,求得x=-3,
故答案为:-3.

点评 本题主要考查两个向量的夹角的定义,查两个向量共线的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知曲线C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k为参数)和直线l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t为参数).
(1)将曲线C的方程化为普通方程;
(2)设直线l与曲线C交于A,B两点,且P(2,1)为弦AB的中点,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C1:y2=ax(a>0)的焦点与双曲线C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦点重合,记为F点,点M与点P(4,6)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为(  )
A.$\frac{5}{2}$B.8C.$\frac{13}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$.
(Ⅰ)求证:AF⊥BC;
(Ⅱ)线段AB上是否存在一点G,使得直线FG与平面DEF所成的角的正弦值为$\frac{\sqrt{93}}{31}$,若存在,求AG的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(1+i)z=|$\sqrt{3}$+i|,i为虚数单位,则z等于(  )
A.1-iB.1+iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在极坐标系中,点A($\sqrt{3}$,$\frac{π}{6}$)、B($\sqrt{3}$,$\frac{π}{2}$),直线l平行于直线AB,且将封闭曲线C:ρ=2cos(θ-$\frac{π}{3}$)(ρ≥0)所围成的面积平分,以极点为坐标原点,极轴为x轴正半轴建立直角坐标系
(Ⅰ)在直角坐标系中,求曲线C及直线l的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已x,y∈R,满足x2+y2+2x=0,则2x+y的最大值、最小值分别为-2+$\sqrt{5}$,-2-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(-2,0),B(2,0),斜率为k的直线l上存在不同的两点M,N满足:|MA|-|MB|=2$\sqrt{3}$,|NA|-|NB|=2$\sqrt{3}$,且线段MN的中点为(6,1),则k的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.春天来了,某学校组织学生外出踏青.4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是(  )
A.964B.1080C.1152D.1296

查看答案和解析>>

同步练习册答案