分析 根据等差数列的通项公式及等比数列的概念便可得出(1+d)2=1+4d,而由d>0即可解得d=2,从而得出an=2n-1,an+1=2n+1,从而便得到${b}_{n}=(-1)^{n-1}\frac{n}{(2n-1)(2n+1)}$,而将分子中的n变成$\frac{1}{4}[(2n-1)+(2n+1)]$,便可得出${b}_{n}=\frac{1}{4}•(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,这样通过观察前几项和的特点便可求出数列{bn}的前n项和Sn.
解答 解:a2=1+d,a5=1+4d;
∵a1,a2,a5成等比数列;
∴${{a}_{2}}^{2}={a}_{1}{a}_{5}$;
即(1+d)2=1•(1+4d);
又d>0,∴解得d=2;
∴an=1+2(n-1)=2n-1,an+1=2n+1;
∴${b}_{n}=(-1)^{n-1}\frac{n}{(2n-1)(2n+1)}$
=$(-1)^{n-1}•\frac{1}{4}•\frac{(2n+1)+(2n-1)}{(2n-1)(2n+1)}$
=$\frac{1}{4}•(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})$;
∴Sn=b1+b2+b3+…+bn
=$\frac{1}{4}(1+\frac{1}{3})+(-\frac{1}{4})(\frac{1}{3}+\frac{1}{5})+\frac{1}{4}(\frac{1}{5}+\frac{1}{7})+…$$+\frac{1}{4}•(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})$
=$\frac{1}{4}[1+\frac{1}{3}-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+\frac{1}{7}+…+(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})]$;
∴若n为奇数,${S}_{n}=\frac{1}{4}(1+\frac{1}{2n+1})$;若n为偶数,${S}_{n}=\frac{1}{4}(1-\frac{1}{2n+1})$;
即${S}_{n}=\frac{1}{4}[1+(-1)^{n-1}\frac{1}{2n+1}]$.
故答案为:$\frac{1}{4}[1+(-1)^{n-1}\frac{1}{2n+1}]$.
点评 考查等差数列的通项公式,以及等比数列的概念,拆项法的运用,数列前n项和的概念,以及通过归纳求数列前n项和的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 54$\root{3}{3{π}^{2}}$ | B. | 54$\root{3}{3π}$ | C. | 54$\root{3}{12{π}^{2}}$ | D. | 54$\root{3}{12π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0]∪[2,+∞) | B. | (-∞,-2]∪[0,+∞) | C. | [-2,+∞) | D. | [-2,0] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com