精英家教网 > 高中数学 > 题目详情
14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=5x+m(m为常数),则f(-log57)的值为(  )
A.4B.-4C.6D.-6

分析 根据奇函数的性质,可得f(0)=0,代入构造关于m的方程,解得当x≥0时函数解析式,进而得到答案.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0,
∵当x≥0时,f(x)=5x+m,
∴f(0)=1+m=0,
解得:m=-1,
故f(x)=5x-1,
∴f(-log57)=-f(log57)=-(7-1)=-6,
故选:D

点评 本题考查的知识点是抽象函数及其应用,函数奇偶性的性质,方程思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD交于点O,E为线段PC上的点,且AC⊥BE.
(1)求证:AC⊥DE;
(2)若BC∥AD,PA=6,BC=$\frac{1}{2}AD=\sqrt{2}$,AB=CD,求异面直线DE与PA所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若m,n∈N*则a>b是(am-bm)•(an-bn)>0成立的(  )条件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)在等差数列{an}中,S10=50,S20=300,求通项an
(2)已知正数等比数列{an}的前n项和Sn,且S3=a2+10a1,a5=81,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.
(I)求证:BH∥平面AEF;
(Ⅱ)求EH与平面AFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:实数x满足-2$≤1-\frac{x-1}{3}$≤2,命题q:实数x满足[x-(1+m)][x-(1-m)]≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市A计划每天从蔬菜基地B处给本市供应蔬菜,为此,准备从主干道AD的C处(不在端点A、D处)做一条道路CB,主干道AD的长为60千米,设计路线如图所示,测得蔬菜基地B在城市A的东偏北60°处,AB长为60千米,设∠BCD=θ,运输汽车在主干道AD上的平均车速为60千米/小时,在道路CB上的平均车速为20千米/小时.
(1)求运输汽车从城市A到蔬菜基地B处所用的时间t关于θ的函数关系式t(θ),并指出其定义域;
(2)求运输汽车从城市A到蔬菜基地B处所用的时间t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将函数f(x)=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$单位后得到的函数图象关于直线x=$\frac{π}{2}$对称,且平移后所得函数的单调递增区间为$(0,\frac{π}{2})$,则实数ϕ的值为$-\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cos x,sin x).若函数f (x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

同步练习册答案