精英家教网 > 高中数学 > 题目详情
3.若正实数x,y,z满足x+y+z=1,则$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是3.

分析 由题意:x+y+z=1,那么$\frac{1}{x+y}=\frac{x+y+z}{x+y}=1+\frac{z}{x+y}$,利用基本不等式求解.

解答 解:由题意:x、y、z>0,满足x+y+z=1.
则$\frac{1}{x+y}$+$\frac{x+y}{z}$=$\frac{x+y+z}{x+y}+\frac{z}{x+y}$=1+$\frac{z}{x+y}+\frac{x+y}{z}$$≥2\sqrt{\frac{z}{x+y}•\frac{x+y}{z}}+1=3$
当且仅当z=x+y=$\frac{1}{2}$时,取等号.
∴$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值为3.
故答案为:3.

点评 本题考查了基本不等式的变形化简能力和运用能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.有3名男生,2名女生,全体排成一排,问下列情形各有多少种排法?
(1)甲不在中间也不在两端;
(2)甲、乙两人必须排在两端;
(3)甲、乙两人不相邻;   
(4)男、女分别排在一起;
(5)男女相间排列;       
(6)甲、乙、丙三人按从左到右的顺序不变.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将3名男生和4名女生排成一行,甲、乙两人必须站在两头,则不同的排列方法共有(  )种.
A.120B.200C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+ax+b(a,b∈R)一个零点为-2,当x∈[0,4]时最大值为0.
(1)求a,b的值;
(2)若对x>3,不等式f(x)>(m+2)x-m-15恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若直线2x+y+a=0与圆x2+y2+2x-4y=0相切,则a的值为(  )
A.±$\sqrt{5}$B.±5C.3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆C1:x2+y2=1与圆C2:(x-1)2+(y+1)2=4有2条公切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为2、2、2$\sqrt{2}$,则以线段PQ为直径的球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)的定义域为{x|0≤x≤1},则f(-x)的定义域为{x|-1≤x≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(xA,yA)是单位圆(圆心为坐标原点O,半径为1)上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$到OB,交单位圆于点B(xB,yB),已知m>0,若myA-2yB的最大值为$\sqrt{7}$,则实数m为3.

查看答案和解析>>

同步练习册答案