精英家教网 > 高中数学 > 题目详情
13.已知点A(xA,yA)是单位圆(圆心为坐标原点O,半径为1)上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$到OB,交单位圆于点B(xB,yB),已知m>0,若myA-2yB的最大值为$\sqrt{7}$,则实数m为3.

分析 由坐标旋转公式,结合基本不等式,myA-2yB的最大值为$\sqrt{7}$,即可求出实数m的值

解答 解:由坐标旋转公式得:${y_B}=\frac{1}{2}{y_A}+\frac{{\sqrt{3}}}{2}{x_A}m{y_A}-2{y_B}=(m-1){y_A}-\sqrt{3}{x_B}≤\sqrt{{{(m-1)}^2}+{{(-\sqrt{3})}^2}}\sqrt{y_A^2+x_A^2}=\sqrt{{{(m-1)}^2}+3}$,
则$\sqrt{{{(m-1)}^2}+3}=\sqrt{7}⇒m=3$.
故答案为3.

点评 本题考查实数值的求法,解题时要注意单位圆、基本不等式的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若正实数x,y,z满足x+y+z=1,则$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x+$\sqrt{3}$y+1=0的斜率、横截距分别是(  )
A.$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$,-1C.-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.f(x)=x3+3x2B.f(x)=2x+2-xC.$f(x)=ln\frac{3+x}{3-x}$D.f(x)=xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,则该数列的前10项和为(  )
A.89B.76C.77D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 019)等于(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,则f(6-a)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4,当x=2时的函数值为(  )
A.58B.60C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两个正根,求m的取值范围.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,3)内,求m的取值范围.

查看答案和解析>>

同步练习册答案