精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,则f(6-a)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 当a<1时,f(a)=$sin\frac{aπ}{3}$=-3,当a≥1时,f(a)=-log2a=-3.求出a=8.从而f(6-a)=f(-2)=sin(-$\frac{2π}{3}$),由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,
∴当a<1时,f(a)=$sin\frac{aπ}{3}$=-3,不成立,
当a≥1时,f(a)=-log2a=-3,解得a=8.
∴f(6-a)=f(-2)=sin(-$\frac{2π}{3}$)=-sin($π-\frac{π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为2、2、2$\sqrt{2}$,则以线段PQ为直径的球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ax2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x)≥0恒成立.
(1)求实数a、b的值;
(2)当x∈[-2,2]时,g(x)=f(x)-kx是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(xA,yA)是单位圆(圆心为坐标原点O,半径为1)上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$到OB,交单位圆于点B(xB,yB),已知m>0,若myA-2yB的最大值为$\sqrt{7}$,则实数m为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.样本中共有5个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,求样本方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=cos(2x+$\frac{π}{3}$)+sin2x-$\frac{1}{2}$cos2x,x∈[0,$\frac{π}{3}$].若m是使不等式f(x)≤a-$\sqrt{2}$恒成立的a的最小值,则cos$\frac{m^2}{6}$π=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)在区间A上,对?a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[$\frac{1}{e^2}$,e]上是“三角形函数”,则实数m的取值范围为(  )
A.$(\frac{1}{e},\frac{{{e^2}+2}}{e})$B.$(\frac{2}{e},+∞)$C.$(\frac{1}{e},+∞)$D.$(\frac{{{e^2}+2}}{e},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x2+2x+3,x∈[-4,4]的值域是[2,27].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是奇函数,且定义域为(-∞,0)∪(0,+∞).若x<0时,f(x)=-x-1.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

同步练习册答案