精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=cos(2x+$\frac{π}{3}$)+sin2x-$\frac{1}{2}$cos2x,x∈[0,$\frac{π}{3}$].若m是使不等式f(x)≤a-$\sqrt{2}$恒成立的a的最小值,则cos$\frac{m^2}{6}$π=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 利用两角和与差的余弦及二倍角的余弦化简,再由辅助角公式化为$f(x)=-sin(2x+\frac{π}{6})+\frac{1}{2}$,由x的范围求得f(x)的最小值得到m值,代入cos$\frac{m^2}{6}$π得答案.

解答 解:f(x)=cos(2x+$\frac{π}{3}$)+sin2x-$\frac{1}{2}$cos2x=$cos2xcos\frac{π}{3}-sin2xsin\frac{π}{3}+\frac{1-cos2x}{2}-\frac{1}{2}cos2x$
=$\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}-cos2x$=$-(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x)+\frac{1}{2}$=$-sin(2x+\frac{π}{6})+\frac{1}{2}$.
∵x∈[0,$\frac{π}{3}$],∴2x$+\frac{π}{6}$∈[$\frac{π}{6},\frac{5π}{6}$],
∴$f(x)_{max}=-\frac{1}{2}+\frac{1}{2}=0$,
由f(x)≤a-$\sqrt{2}$恒成立,得a$≥\sqrt{2}$,即m=$\sqrt{2}$.
∴cos$\frac{m^2}{6}$π=$cos\frac{π}{3}=\frac{1}{2}$.
故选:D.

点评 本题考查三角函数中的恒等变换应用,考查了恒成立问题的求解方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到右顶点的距离为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=kx+m(k∈R),使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0成立?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.f(x)=x3+3x2B.f(x)=2x+2-xC.$f(x)=ln\frac{3+x}{3-x}$D.f(x)=xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 019)等于(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,则f(6-a)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某超市为了了解顾客结算时间的信息,安排一名工作人员收集,整理了该超市结算时间的统计结果,如表:
结算所需的时间(分)12345
频率0.10.40.30.10.1
假设每个顾客结算所需的时间互相独立,且都是整数分钟,从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始结算的概率;
(2)X表示至第2分钟末已结算完的顾客人数,求X的分布列及数学期望.
(注:将频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4,当x=2时的函数值为(  )
A.58B.60C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是(-∞,+∞)上的偶函数,f(x+3)=f(x).当0≤x≤1时有f(x)=3x,则f(8.5)等于(  )
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.
(Ⅰ)求f(3)+f(-1);
(Ⅱ)求f(x)在R上的解析式;
(Ⅲ)求不等式-7≤f(x)≤3的解集.

查看答案和解析>>

同步练习册答案