精英家教网 > 高中数学 > 题目详情
17.若函数f(x)在区间A上,对?a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[$\frac{1}{e^2}$,e]上是“三角形函数”,则实数m的取值范围为(  )
A.$(\frac{1}{e},\frac{{{e^2}+2}}{e})$B.$(\frac{2}{e},+∞)$C.$(\frac{1}{e},+∞)$D.$(\frac{{{e^2}+2}}{e},+∞)$

分析 若f(x)为“三角形函数”.则在区间D上,函数的最大值M和最小值m应满足:M<2m,利用导数法求出函数的最值,可得实数m的取值范围.

解答 解:若f(x)为“区域D上的三角形函数”.
则在区间D上,函数的最大值M和最小值m应满足:M<2m,
∵函数f(x)=xlnx+m在区间[$\frac{1}{e^2}$,e]上是“三角形函数”,
f′(x)=lnx+1,
当x∈[$\frac{1}{e^2}$,$\frac{1}{e}$)时,f′(x)<0,函数f(x)递减;
当x∈($\frac{1}{e}$,e]时,f′(x)>0,函数f(x)递增;
故当x=$\frac{1}{e}$时,函数f(x)取最小值-$\frac{1}{e}$+m,
又由f(e)=e+m,f($\frac{1}{e^2}$)=-$\frac{2}{{e}^{2}}$+m,
故当x=e时,函数f(x)取最大值e+m,
∴0<e+m<2(-$\frac{1}{e}$+m),
解得:m∈$(\frac{{{e^2}+2}}{e},+∞)$,
故选:D.

点评 本题考查的知识点是函数的最值,能正确理解f(x)为“三角形函数”的概念,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数y=$\sqrt{3-2x-{x^2}}$的定义域是(  )
A.[-3,1]B.[-1,3]C.[1,3]D.(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,则该数列的前10项和为(  )
A.89B.76C.77D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,则f(6-a)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈(0,π),x≤sinx;q:函数f(x)=$\frac{1}{x}$,x≠0是奇函数,则下列结论正确的是(  )
A.p∨q是假命题B.p∧q是真命题C.p∧¬q是真命题D.p∨¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4,当x=2时的函数值为(  )
A.58B.60C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f($\frac{4}{x+1}$)=2x2-3x,则f(2)等于(  )
A.0B.$-\frac{4}{3}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.福州青运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10$\sqrt{6}$米,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,x∈(-1,0]}\\{3-{x}^{2},x∈(0,1]}\end{array}\right.$,且f(x)=f(x+2),g(x)=$\frac{3x-7}{x-2}$,则方程g(x)=f(x)-g(x)在区间[-3,7]上的所有零点之和为(  )
A.12B.11C.10D.9

查看答案和解析>>

同步练习册答案