| A. | 89 | B. | 76 | C. | 77 | D. | 35 |
分析 根据数列递推式,可得数列{a2k-1}是首项为1、公差为1的等差数列,因此a2k-1=k,数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k,从而可求数列的前10项的和.
解答 解:因为a1=1,a2=2,所以a3=(1+cos2 $\frac{π}{2}$)a1+sin2 $\frac{π}{2}$=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k-1(k∈N*)时,a2k+1=[1+cos2 $\frac{(2k-1)π}{2}$]a2k-1+sin2$\frac{(2k-1)π}{2}$=a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,因此a2k-1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2 $\frac{2kπ}{2}$)a2k+sin2$\frac{2kπ}{2}$=2a2k.
所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.
该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77
故选:C.
点评 本题主要考查了数列的递推式,注意数列中的奇数项和偶数项的不同是解题的关键.
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 95% | B. | 97.5% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{e},\frac{{{e^2}+2}}{e})$ | B. | $(\frac{2}{e},+∞)$ | C. | $(\frac{1}{e},+∞)$ | D. | $(\frac{{{e^2}+2}}{e},+∞)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com