精英家教网 > 高中数学 > 题目详情
6.福州青运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10$\sqrt{6}$米,求旗杆的高度.

分析 先画出示意图,根据题意可求得∠PCB和∠PEC,转化为∠CPB,然后利用正弦定理求得BP,最后在Rt△BOP中求出OP即可.

解答 解:如图所示,依题意可知∠PCB=45°,
∠PEC=180°-60°-15°=105°
∴∠CPB=180°-45°-105°=30°
由正弦定理可知BP=$\frac{CB}{sin∠CPB}$•sin∠BCP=20$\sqrt{3}$米
∴在Rt△BOP中,
OP=PB•sin∠PBO=20$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=30米,
即旗杆的高度为30米.

点评 本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用正弦定理以及解三角形解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ax2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x)≥0恒成立.
(1)求实数a、b的值;
(2)当x∈[-2,2]时,g(x)=f(x)-kx是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)在区间A上,对?a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[$\frac{1}{e^2}$,e]上是“三角形函数”,则实数m的取值范围为(  )
A.$(\frac{1}{e},\frac{{{e^2}+2}}{e})$B.$(\frac{2}{e},+∞)$C.$(\frac{1}{e},+∞)$D.$(\frac{{{e^2}+2}}{e},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x2+2x+3,x∈[-4,4]的值域是[2,27].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设c>0,|x-1|<$\frac{c}{3}$,|y-1|<$\frac{c}{3}$,求证:|2x+y-3|<c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知log27$\frac{1}{3}$=x,则x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合U={x|-3≤x<2},M={x|-1<x<1},∁UN={x|0<x<2},那么集合M∪N={x|-3≤x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是奇函数,且定义域为(-∞,0)∪(0,+∞).若x<0时,f(x)=-x-1.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{9}$+$\frac{y^2}{m}$=1的焦距为4,则n=(  )
A.5B.3或5C.13D.5或13

查看答案和解析>>

同步练习册答案