精英家教网 > 高中数学 > 题目详情
11.已知log27$\frac{1}{3}$=x,则x=-$\frac{1}{3}$.

分析 利用对数换底公式求解.

解答 解:∵log27$\frac{1}{3}$=x,
∴x=log27$\frac{1}{3}$=$\frac{lg\frac{1}{3}}{lg27}$=$\frac{-lg3}{3lg3}$=-$\frac{1}{3}$.
故答案为:-$\frac{1}{3}$.

点评 本题考查对数式化简求值,是基础题,解题时要认真审题,注意换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.f(x)=x3+3x2B.f(x)=2x+2-xC.$f(x)=ln\frac{3+x}{3-x}$D.f(x)=xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4,当x=2时的函数值为(  )
A.58B.60C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是(-∞,+∞)上的偶函数,f(x+3)=f(x).当0≤x≤1时有f(x)=3x,则f(8.5)等于(  )
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.福州青运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10$\sqrt{6}$米,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{kx+1(x≤0)}\\{lo{g}_{\frac{1}{2}}x,(x>0)}\end{array}\right.$,则关于函数F(x)=f(f(x))的零点个数,正确的结论是②④.(写出你认为正确的所有结论的序号)
①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两个正根,求m的取值范围.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,3)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.
(Ⅰ)求f(3)+f(-1);
(Ⅱ)求f(x)在R上的解析式;
(Ⅲ)求不等式-7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和(∁RA)∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案