分析 逐项判断即可.
解答 解:
①当k=0时,$f(x)=\left\{\begin{array}{l}{1}&{x≤0}\\{lo{g}_{\frac{1}{2}}x}&{x>0}\end{array}\right.$,当x≤0时,f(x)=1,则f(f(x))=f(1)=$lo{g}_{\frac{1}{2}}1$=0,
此时有无穷多个零点,故①错误;
②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,
此时f(f(x))=f(kx+1)=$lo{g}_{\frac{1}{2}}(kx+1)$,令f(f(x))=0,可得:x=0;
(Ⅱ)当0<x≤1时,$lo{g}_{\frac{1}{2}}x≥0$,此时
f(f(x))=f($lo{g}_{\frac{1}{2}}x$)=$lo{g}_{\frac{1}{2}}(lo{g}_{\frac{1}{2}}x)$,令f(f(x))=0,可得:x=$\frac{1}{2}$,满足;
(Ⅲ)当x>1时,$lo{g}_{\frac{1}{2}}x<0$,此时f(f(x))=f($lo{g}_{\frac{1}{2}}x$)=k$lo{g}_{\frac{1}{2}}x$+1>0,此时无零点.
综上可得,当k<0时,函数有两零点,故②正确;
③当k>0时,(Ⅰ)当x≤$-\frac{1}{k}$时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,
令f(f(x))=0,可得:$x=-\frac{k+1}{{k}^{2}}<-\frac{1}{k}$,满足;
(Ⅱ)当$-\frac{1}{k}<x≤0$时,kx+1>0,此时f(f(x))=f(kx+1)=$lo{g}_{\frac{1}{2}}(kx+1)$,令f(f(x))=0,可得:x=0,满足;
(Ⅲ)当0<x≤1时,$lo{g}_{\frac{1}{2}}x≥0$,此时f(f(x))=f($lo{g}_{\frac{1}{2}}x$)=$lo{g}_{\frac{1}{2}}(lo{g}_{\frac{1}{2}}x)$,令f(f(x))=0,可得:x=$\frac{1}{2}$,满足;
(Ⅳ)当x>1时,$lo{g}_{\frac{1}{2}}x<0$,此时f(f(x))=f($lo{g}_{\frac{1}{2}}x$)=k$lo{g}_{\frac{1}{2}}x$+1,令f(f(x))=0得:x=${2}^{\frac{1}{k}}$>1,满足;
综上可得:当k>0时,函数有4个零点.故③错误,④正确.
故答案为:②④.
点评 本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥α,则 a∥b | B. | 若a∥α,a∥β,则 α∥β | ||
| C. | 若a⊥α,b⊥α,则 a∥b | D. | 若α⊥β,α⊥γ,则 β∥γ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (-1,0] | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com