精英家教网 > 高中数学 > 题目详情
8.现有:
①不小于$\sqrt{3}$的有理数  ②某中学所有高个子的同学        ③全部正方形          ④全体无实数根的一元二次方程.
四个条件所指对象不能构成集合的有②(填代号).

分析 由题意,集合中的元素要满足确定性,无序性,互异性,从而求解

解答 解:(1)满足集合元素的确定性,可以构成集合;
(2)高个子的同学不确定,不能构成集合;
(3)正方形是确定的,故能构成集合;
(4)无实数根的一元二次方程能构成集合;
故答案为:②

点评 本题考查了元素特征的应用,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 019)等于(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是(-∞,+∞)上的偶函数,f(x+3)=f(x).当0≤x≤1时有f(x)=3x,则f(8.5)等于(  )
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{kx+1(x≤0)}\\{lo{g}_{\frac{1}{2}}x,(x>0)}\end{array}\right.$,则关于函数F(x)=f(f(x))的零点个数,正确的结论是②④.(写出你认为正确的所有结论的序号)
①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两个正根,求m的取值范围.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,3)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.
(Ⅰ)求f(3)+f(-1);
(Ⅱ)求f(x)在R上的解析式;
(Ⅲ)求不等式-7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={0,1,2},Q={y|y=2x},则P∩Q=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,且f(3)=0,则使得f(x)>0的x的取值范围是(  )
A.(-∞,-3)B.(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步练习册答案