精英家教网 > 高中数学 > 题目详情
4.设α,β,γ是三个不同的平面,a,b是两个不同的直线,下列四个命题中正确的是(  )
A.若a∥α,b∥α,则 a∥bB.若a∥α,a∥β,则 α∥β
C.若a⊥α,b⊥α,则 a∥bD.若α⊥β,α⊥γ,则 β∥γ

分析 对4个选项分别进行判断,即可得出结论.

解答 解:由α、β、γ是三个不同的平面,a、b是两条不同的直线,知:
在A中,若a∥α,b∥α,则a与b相交、平行或异面,故A错误;
在B中,若若a∥α,a∥β,则α与β相交或平行,故B错误;
在C中,根据垂直于同一平面的两条直线平行,故C正确;
在D中,若α⊥β,α⊥γ,则β与γ相交或平行,故D错误.
故选:C.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.数列{an}的前n项和Sn=An2+Bn(A,B是常数)是数列{an}是等差数列的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某超市为了了解顾客结算时间的信息,安排一名工作人员收集,整理了该超市结算时间的统计结果,如表:
结算所需的时间(分)12345
频率0.10.40.30.10.1
假设每个顾客结算所需的时间互相独立,且都是整数分钟,从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始结算的概率;
(2)X表示至第2分钟末已结算完的顾客人数,求X的分布列及数学期望.
(注:将频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,A(0,-1),B(m,1),C($\sqrt{3}$,0),若向量$\overrightarrow{AB}$与$\overrightarrow{AC}$夹角为120°,则实数m的值为(  )
A.0或2$\sqrt{3}$B.2$\sqrt{3}$C.0或-2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是(-∞,+∞)上的偶函数,f(x+3)=f(x).当0≤x≤1时有f(x)=3x,则f(8.5)等于(  )
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{x-1}$-$\frac{2}{{\sqrt{x-1}}}$+2.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若g(x)=f($\frac{{1+{x^2}}}{x^2}$),(x≠0),求g(x)的解析式和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{kx+1(x≤0)}\\{lo{g}_{\frac{1}{2}}x,(x>0)}\end{array}\right.$,则关于函数F(x)=f(f(x))的零点个数,正确的结论是②④.(写出你认为正确的所有结论的序号)
①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数,又是在区间(0,+∞)上单递减的函数是(  )
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

同步练习册答案