分析 由等差数列的求和公式和通项公式,分别证明必要性和充分性即可.
解答 证明:充分性:当n=1时,a1=A+B;当n≥2时,an=Sn-Sn-1=2An+B-A,
显然当n=1时也满足上式,
∴an-an-1=2A
∴{an}是等差数列.
必要性:∵数列{an}为等差数列,
∴Sn=na1+$\frac{n(n-1)}{2}$d=$\frac{d}{2}$n2+(a1-$\frac{d}{2}$)n,
令A=$\frac{d}{2}$,B=a1-$\frac{d}{2}$,则Sn=An2+Bn(A,B是常数).
综上,“Sn=An2+Bn(A,B是常数)”是“数列{an}为等差数列”的充要条件.
点评 本题考查了等差数列的充要条件、通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{2kπ+\frac{π}{6}\;,\;2kπ+\frac{π}{3}}]$ | B. | $[{2kπ+\frac{π}{6}\;,\;2kπ+\frac{π}{2}}]$ | C. | $[{2kπ+\frac{π}{3}\;,\;2kπ+\frac{π}{2}}]$ | D. | $[{2kπ-\frac{7π}{6},2kπ-\frac{π}{6}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{41}{42}$ | B. | $\frac{1}{42}$ | C. | $\frac{40}{41}$ | D. | $\frac{42}{41}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥α,则 a∥b | B. | 若a∥α,a∥β,则 α∥β | ||
| C. | 若a⊥α,b⊥α,则 a∥b | D. | 若α⊥β,α⊥γ,则 β∥γ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com