精英家教网 > 高中数学 > 题目详情
5.已知两定点的坐标分别是(-4,0),(4,0),动点P到两定点的距离之和等于10,求动点P的轨迹方程.

分析 通过椭圆的定义直接可得结论.

解答 解:由椭圆定义可知动点P的轨迹是椭圆,
其焦点在x轴上,且c=4、2a=10,
∴b2=a2-c2=9,
∴轨迹方程为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$,
故答案为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$.

点评 本题考查椭圆的定义,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某超市为了了解顾客结算时间的信息,安排一名工作人员收集,整理了该超市结算时间的统计结果,如表:
结算所需的时间(分)12345
频率0.10.40.30.10.1
假设每个顾客结算所需的时间互相独立,且都是整数分钟,从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始结算的概率;
(2)X表示至第2分钟末已结算完的顾客人数,求X的分布列及数学期望.
(注:将频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{kx+1(x≤0)}\\{lo{g}_{\frac{1}{2}}x,(x>0)}\end{array}\right.$,则关于函数F(x)=f(f(x))的零点个数,正确的结论是②④.(写出你认为正确的所有结论的序号)
①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.
③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.
(Ⅰ)求f(3)+f(-1);
(Ⅱ)求f(x)在R上的解析式;
(Ⅲ)求不等式-7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$不平行,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,则下列结论中正确的是(  )
A.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$垂直B.向量$\overrightarrow{a}-\overrightarrow{b}$与$\overrightarrow{a}$垂直
C.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$垂直D.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={0,1,2},Q={y|y=2x},则P∩Q=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数,又是在区间(0,+∞)上单递减的函数是(  )
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\left\{\begin{array}{l}{a({x}^{2}-1)-2lnx,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$.
(1)若a=1,求f(x)的最小值;
(2)若a>1,讨论f(x)的零点个数.

查看答案和解析>>

同步练习册答案