精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$不平行,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,则下列结论中正确的是(  )
A.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$垂直B.向量$\overrightarrow{a}-\overrightarrow{b}$与$\overrightarrow{a}$垂直
C.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$垂直D.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$平行

分析 求出($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}-\overrightarrow{b}$)=0,从而得到$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$垂直.

解答 解:∵向量$\overrightarrow{a}$与$\overrightarrow{b}$不平行,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,
∴($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}-\overrightarrow{b}$)=${\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}$=|$\overrightarrow{a}$|2-|$\overrightarrow{b}$|2=0,
∴$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$垂直.
故选:A.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(I)求a的值;
(II)若不等式ax2+bx+1≥0在R上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+2ax+3.
(Ⅰ)若f(x)在(-∞,$\frac{1}{2}$]是减函数,在[$\frac{1}{2}$,+∞)是增函数,求函数f(x)在区间[-1,5]的最大值和最小值.
(Ⅱ)求实数a的取值范围,使f(x)在区间[-5,5]上是单调函数,并指出相应的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:($\frac{1}{8}$)${\;}^{\frac{1}{3}}$-log32×log427+(lg$\sqrt{2}$+lg$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两定点的坐标分别是(-4,0),(4,0),动点P到两定点的距离之和等于10,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=sin(ωx-$\frac{π}{3}$)与y=$\frac{1}{2}$交点中距离最小为$\frac{π}{3}$,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“0<a<1”是“函数f(x)=|x|-ax在(0,+∞)上有零点”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=5sin(3x+$\frac{π}{6}$),x∈R的最小正周期是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\vec a$=(x-1,2),$\vec b$=(4,y),若$\vec a$⊥$\vec b$,则4x+2y的最小值为4.

查看答案和解析>>

同步练习册答案