精英家教网 > 高中数学 > 题目详情
20.已知不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(I)求a的值;
(II)若不等式ax2+bx+1≥0在R上恒成立,求b的取值范围.

分析 ( I)由题意,利用根与系数的关系,即可求出a的值;
( II)根据不等式的解集为R时△≤0,列出不等式求出b的取值范围.

解答 解:( I)由题意知1-a<0,
且-3和1是方程(1-a)x2-4x+6=0的两根,
∴$\left\{\begin{array}{l}1-a<0\\ \frac{4}{1-a}=-2\\ \frac{6}{1-a}=-3\end{array}\right.$,…(3分)
解得a=3;…(5分)
( II)由( I)知a=3,
代入ax2+bx+1≥0,得3x2+bx+1≥0;…(6分)
若此不等式解集为R,则△=b2-4ac≤0,
解得-2$\sqrt{3}$≤b≤2$\sqrt{3}$,
故b的取值范围是[-2$\sqrt{3}$,2$\sqrt{3}$].

点评 本题考查了根与系数的关系以及判别式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.由下列各式能确定y是x的函数是(  )
A.x2+y2=1B.x2-y+3=0C.$y=\sqrt{x-3}+\sqrt{2-x}+3$D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,若a3=b3,a4=b4,且$\frac{{{S_5}-{S_3}}}{{{T_4}-{T_2}}}$=5,$\frac{{{a_5}+{a_3}}}{{{b_5}+{b_3}}}$=(  )
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆M与圆O:x2+y2=3+2$\sqrt{2}$相内切,且和x轴的正半轴,y轴的正半轴都相切,则圆M的标准方程是(x-1)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某超市为了了解顾客结算时间的信息,安排一名工作人员收集,整理了该超市结算时间的统计结果,如表:
结算所需的时间(分)12345
频率0.10.40.30.10.1
假设每个顾客结算所需的时间互相独立,且都是整数分钟,从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始结算的概率;
(2)X表示至第2分钟末已结算完的顾客人数,求X的分布列及数学期望.
(注:将频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\left\{{\begin{array}{l}{{{({\frac{1}{2}})}^{x-\frac{3}{2}}},x≤\frac{1}{2}}\\{{{log}_a}x,x>\frac{1}{2}}\end{array}$(a>0,且a≠1)的值域是R,则实数a的取值范围是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,A(0,-1),B(m,1),C($\sqrt{3}$,0),若向量$\overrightarrow{AB}$与$\overrightarrow{AC}$夹角为120°,则实数m的值为(  )
A.0或2$\sqrt{3}$B.2$\sqrt{3}$C.0或-2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{x-1}$-$\frac{2}{{\sqrt{x-1}}}$+2.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若g(x)=f($\frac{{1+{x^2}}}{x^2}$),(x≠0),求g(x)的解析式和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$不平行,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,则下列结论中正确的是(  )
A.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$垂直B.向量$\overrightarrow{a}-\overrightarrow{b}$与$\overrightarrow{a}$垂直
C.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$垂直D.向量$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}-\overrightarrow{b}$平行

查看答案和解析>>

同步练习册答案