精英家教网 > 高中数学 > 题目详情
10.2016年夏季奥运会将在巴西里约热内卢举行,体育频道为了解某地区关于奥运会直播的收视情况,随机抽取了100名观众进行调查,其中40岁以上的观众有55名,下面是根据调查结果绘制的观众准备平均每天收看奥运会直播时间的频率分布表(时间:分钟):
分组[0,20)[20,40)[40,60)[60,80)[80,100)[100,120)
频率0.10.180.220.250.20.05
将每天准备收看奥运会直播的时间不低于80分钟的观众称为“奥运迷”,已知“奥运迷”中有10名40岁以上的观众.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否有95%以上的把握认为“奥运迷”与年龄有关?
非“奥运迷”“奥运迷”合计
40岁以下
40岁以上
合计
(2)将每天准备收看奥运会直播不低于100分钟的观众称为“超级奥运迷”,已知“超级奥运迷”中有2名40岁以上的观众,若从“超级奥运迷”中任意选取2人,求至少有1名40岁以上的观众的概率.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

分析 (1)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出K2,与3.841比较即可得出结论;
(2)由题意,列出所有的基本事件,计算出事件“任意选取2人,至少有1名40岁”包含的基本事件数,即可计算出概率.

解答 解:(1)由频率分布表可知,在轴取的100人中,“奥运迷”有25人,从完成2×2列联表如下:

非“奥运迷”“奥运迷”合计
40岁以下301545
40岁以上451055
合计7525100
${K^2}=\frac{{100×{{({30×10-45×15})}^2}}}{75×25×45×55}=\frac{100}{33}≈3.030$.
因为3.030<3.841,所以没有95%以上的把握认为“奥运迷”与年龄有关.
(2)由频率分布表可知,“超级奥运迷”有5人,从而所有可能结果所组成的基本事件空间为:Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中ai表示男性,i=1,2,3,bi表示女性,i=1,2.Ω由10个基本事件组成,且是等可能的,用A表示事件“任意选2人,至少有1名40岁以上观众”,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},即事件A包含7个基本事件,所以$P(A)=\frac{7}{10}$.

点评 本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若ABCD为正方形,探究在什么条件下,二面角C-AF-D大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)满足:对任意α,β∈R,都有f(α•β)=α•f(β)+β•f(α),且f(2)=2,数列{an}满足an=f(2n)(n∈N+).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{{b}_{n}}{{b}_{n+1}}$,记Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).问:是否存在正整数M,使得当n∈N+时,不等式Tn<$\frac{M}{584}$恒成立?若存在,求出M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}中,a2=5,a6=17,若从数列{an}中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序构成一个新的数列{bn}.
(1)求数列{bn}的通项公式;
(2)设cn=$\frac{3n}{{{b_n}+1}}$(n∈N*),Tn=c1+c2+…+cn(n∈N*),证明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(Ⅰ)求合唱团学生参加活动的人均次数;
(Ⅱ)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

( I)求证:AD⊥BM;
( II)若点E是线段DB上的一动点,当二面角E-AM-D的余弦值为$\frac{{\sqrt{2}}}{2}$时,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{{3\sqrt{2}}}{3}$,AB=6$\sqrt{2}$,AD=6,则BD的长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=-x2-2x,现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)画出函数f(x)在y轴右侧图象,并写出函数f(x)(x∈R)的单调递增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)-2ax+2(x∈[0,2]),求函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD为正方形,PD⊥平面ABCD,EC∥PD.且PD=2EC=$\sqrt{2}$.
(1)求证:AC∥平面PBE;
(2)若AD=1,求直线PB与底面ABCD所成角的大小;
(3)若AD=1,求四棱锥B-PDCE的体积.

查看答案和解析>>

同步练习册答案