精英家教网 > 高中数学 > 题目详情
19.下列说法正确的是(  )
A.“x<0”是“ln(x+1)<0”的充要条件
B.“?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0”
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,17,29,41,53的同学均被选出,则该班学生人数可能为65
D.在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则随机变量X的期望$E(X)=\frac{Mn}{N}$

分析 对4个选项,分别进行判断,即可得出结论.

解答 解:对于A,由ln(x+1)<0,得:0<x+1<1,解得:-1<x<0,故x<0是-1<x<0的必要不充分条件,不正确;
对于B,“?x≥2,x2-3x+2≥0”的否定是“?x≥2,x2-3x+2<0”,不正确;
对于C,学号为5,17,29,41,53的同学,样本间隔为17-5=12,则人数为12×5=60,应该是60人,故不正确;
对于D,含有M件次品的N件产品中,任取n件,其中恰有X件次品,则随机变量X的期望$E(X)=\frac{Mn}{N}$,正确.
故选:D.

点评 本题考查命题的真假判断,考查充要条件的判定,命题的否定,系统抽样,期望,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=tan$\frac{1}{2}$x的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N分别是AB,PC的中点;
(1)求四棱锥P-ABCD的体积;
(2)求MN与面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{1}{3}$x3+(1-a)x2-4ax+a,其中a为常数.
(1)当a=2时,求函数f(x)的单调减区间;
(2)若函数f(x)在区间[0,3]上的最大值为3,求实数a的取值集合;
(3)试讨论函数y=f′(x)的图象与函数y=$\frac{1}{x}$-(a+1)2的图象的公切线条数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为直线(  )
A.x=-3B.x=0C.x=3D.x=6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=(x-a)2lnx,a∈R
(1)证明:函数f(x)=(x-a)2lnx,a∈R的图象恒经过一个定点;
(2)若函数h(x)=$\frac{x}{x-a}$f′(x)在(0,+∞)有定义,且不等式h(x)≤0在(0,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{x+2}{x-6}$.
(1)若f(a)=2,求a及f(3)的值;
(2)求g(x)=f(x+6)的解析式;
(3)判断g(x)在[1,4]上的单调性并求出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范围;
(3)若m>n>0,试比较$\frac{f(m)-f(n)}{m-n}$与$\frac{2n}{{{m^2}+{n^2}}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是各项均为正数的等差数列,公差为2.对任意的n∈N*,bn是an和an+1的等比中项.设cn=b2n+1-bn2,n∈N*
(Ⅰ)求证:数列{cn}是等差数列.
(Ⅱ)若c1=16,求数列an的通项公式.

查看答案和解析>>

同步练习册答案