分析 根据条件知f(x)在原点有定义,并且为奇函数,从而f(0)=0,这样即可求出m=-1,分离常数得到$f(x)=-1+\frac{2}{1+{2}^{x}}$,根据解析式可以看出x增大时,f(x)减小,从而得出该函数在[-1,1]上单调递减,从而f(1)≤f(x)≤f(-1),这样便可求出f(x)的值域.
解答 解:f(x)为奇函数,在原点有定义;
∴f(0)=0;
即$\frac{1+m}{1+1}=0$;
∴m=-1;
$f(x)=\frac{1-{2}^{x}}{1+{2}^{x}}=\frac{-(1+{2}^{x})+2}{1+{2}^{x}}=-1+\frac{2}{1+{2}^{x}}$;
x增大时,1+2x增大,∴f(x)减小;
∴f(x)在[-1,1]上单调递减;
∴f(1)≤f(x)≤f(-1);
即$-\frac{1}{3}≤f(x)≤\frac{1}{3}$;
∴f(x)的值域为$[-\frac{1}{3},\frac{1}{3}]$.
故答案为:-1,[$-\frac{1}{3},\frac{1}{3}$].
点评 考查奇函数的定义,奇函数在原点有定义时,f(0)=0,根据单调性定义判断一个函数单调性的方法,指数函数的单调性,以及根据单调性求函数的值域.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (5,+∞) | B. | (-∞,0) | C. | (-∞,0)∪(5,+∞) | D. | (-∞,0),$(\frac{5}{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x+1)=2f(x) | B. | f(2x)=[f(x)]2 | C. | f(x+y)=f(x)•f(y) | D. | f(xy)=f(x)•f(y) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com