精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
)
考点:不等式的证明,绝对值不等式,绝对值不等式的解法
专题:不等式
分析:(Ⅰ)根据绝对值不等式的解法解不等式f(x-1)+f(x+3)≥6即可;
(Ⅱ)利用分析法 进行证明不等式.
解答: 解:( I)∵f(x)=|x-1|.
∴不等式f(x-1)+f(x+3)≥6等价|x-2|+|x+2|≥6,
若当x≥2时,不等式等价为x-2+x+2≥6,
即2x≥6,解得x≥3.
当-2<x<2时,不等式等价为2-x+x+2≥6,
即4≥6,此时不成立.
当x≤-2时,不等式等价为2-x-x-2≥6,
即2x≤-6,即x≤-3.
综上不等式的解集为(-∞,-3]∪[3,+∞).
( II)要证f(ab)>|a|f(
b
a
)

只需证|ab-1|>|b-a|,
只需证(ab-1)2>(b-a)2
而(ab-1)2-(b-a)2=a2b2-a2-b2+1=(a2-1)(b2-1)>0,
∵|a|<1,|b|<1,
∴a2<1,b2<1,
即a2-1<0,b2-1<0,
即(a2-1)(b2-1)>0,成立,
从而原不等式成立.
点评:本题主要考查绝对值不等式的解法,要注意进行分段讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求证:数列{an}的通项公式是an=3n(n∈N*).
(2)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2+x-a,x∈[
2
,2],其中a为实数.
(1)求函数的最大值g(a);
(2)若对于任意的非零实数a,不等式g(a)≥λg(
1
a
)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:函数f(x)与实数m的一种符号运算为:m*f(x)=f(x)[f(x+m)-f(x)],已知:f(x)=
1
2
x2-3x-
3
4
,g(x)=4*f(x)+
7
2
x2
(1)求g(x)的单调区间;
(2)若在x∈[0,2]上,g(x)>2a-3恒成立,试求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科学生做)若函数f(x)对任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,则称f(x)为D上的“收缩”函数
(1)判断函数f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收缩”函数,并说明理由;
(2)函数f(x)=
k
x+2
(k∈R)

    (i)讨论函数f(x)=
k
x+2
(k∈R)
在x∈[-1,+∞)的单调性,并用定义证明;
   (ii)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上为“收缩”函数,若存在,求k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+Dx-6y+1=0上有两点P、Q关于直线x-y+4=0对称.
(1)求圆C的半径;
(2)若OP⊥OQ,O为坐标原点,求PQ方程;
(3)直线l:(2m-1)x-(m-1)y+8m-6=0被圆C截得弦长最短时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=6上,圆弧C1的圆心是坐标原点O,半径为10,圆弧C2过点A(38,0).
(1)求圆弧C2的方程;
(2)曲线C上是否存在点P,满足PA=
39
PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-21=0与曲线C交于E、F两点,当EF=38时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为
2
3
,乙队获胜的概率为
1
3
,假设每场比赛的结果互相独立.现已赛完两场,乙队以2:0暂时领先.
(Ⅰ)求甲队获得这次比赛胜利的概率;
(Ⅱ)设比赛结束时两队比赛的场数为随机变量X,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
的夹角是60°,
a
=(2,0),
b
=(sinθ,cosθ),则|
a
+2
b
|
=
 

查看答案和解析>>

同步练习册答案